SARASWATI MAHILA MAHAVIDHYALAYA, PALWAL

LESSON-PLAN

Class: M.sc (Physics) sem

Semester: 2nd

Subject: Nuclear and particle physics Session: 2021-22

Lecture Number	Торіс
Lect.1	UNIT – 1
	Two nucleon and nuclear force: deuteron basic concept.
Lect.2	Deuteron binding energy.
Lect.3	Deuteron excited state –range and depth of potential.
Lect.4	Deuteron radius.
Lect.5	Electric quadrupole moment of deuteron.
Lect.6	Magnetic moment of deuteron.
Lect.7	the evidence of non-central (Tensor) force
Lect.8	spin dependence of nuclear force.
Lect.9	Nucleon-nucleon scattering;
Lect.10	P-P Scattering (phase shift and scattering length).
Lect.11	N-P And N – N Scattering (phase shift and scattering length).
Lect.12	S- Wave Range Theory.
Lect.13	Charge Independent and charge symmetry.
Lect.14	Iso-spin Formalism.
Lect.15	Ortho and Para hydrogen scattering.
Lect.16	Difference between p-p, n-n and n-p nuclear force
Lect.17	Numerical problem

Lect.18	UNIT- 2 nd Nuclear model- basic concent
Lect.19	Liquid drop model assumption, dissimilarities, similarities .
Lect.20	Bethe weizsacker semi empirical formula.
Lect.21	Shell model.
Lect.22	Shell model evidence.
Lect.23	Extreme single particle.
Lect.24	Nuclear magnetic moment.
Lect.25	Stability of nuclei.
Lect.26	Prediction of the shell model.
Lect.27	Collective nuclear model.
Lect.28	Vibrational state of collective model.
Lect.29	Rotational state.
Lect.30	Comparison of liquid drop model ,shell model and collective model
Lect.31	Numerical of nuclear magnetic moment
Lect.32	Assignment given
Lect.33	Test 1
Lect.34	UNIT- 3 RD Nuclear decay and nuclear reaction basic introduction
Lect.35	Alpha particle .
Lect.36	Decay of alpha particle.
Lect.37	Geiger nuttal law
Lect.38	Introduction of beta decay.

Lect.39	Fermi theory of beta decay.
Lect.40	Classification of beta transition.
Lect.41	Conservation in beta decay.
Lect.42	Selection rule, comparative half life.
Lect.43	Kurie plot
Lect.44	Gamow- teller transition.
Lect.45	Parity non conservation in beta decay.
Lect.46	Gamma decay.
Lect.47	Selection rules , transition , life time
Lect.48	Transition probality.
Lect.49	Nuclear reaction , types of nuclear reaction.
Lect.50	Compound nucleus reaction.
Lect.51	Direct reaction.
Lect.52	Optical model.
Lect.53	Continuum theory of nuclear reaction
Lect.54	Breit -Weigner formula.
Lect.55	Numericals
Lect.56	Assignment.
Lect.57	UNIT -4 TH Elementary particle introduction.
Lect.58	Basic interaction of elementary particle.
Lect.60	Classification of elementary particle.

L

Lect.61	Hadrons in detail
Lect.62	Muons.
Lect.63	Leptons.
Lect.64	Baryons.
Lect.65	Conservation laws for elementary particle- introduction
Lect.66	Lepton no. ,muon no. , baryon no.
Lect.67	Gell mann nishijima formula hypercharge, stangeness
Lect.68	Iso-spin, hyprones
Lect.69	Time reversal, CP,CPT Inversion
Lect.70	Charge conjugation
Lect.71	Space inversion.
Lect.72	Elementary symmetry.
Lect.73	SU(2)
Lect.74	SU(3)
Lect.75	Quark model.
Lect.76	Types of quark and colour
Lect.77	Assignment
Lect.78	Test
Lect.79	Revision
Lect.80	Revision